My Quote

“Cyber criminals are real.Never let them into your network.As long as they believe in absurdities they will continue to commit atrocities” Beware!!!!

Wednesday, June 22, 2011

Types of Firewalls


Some of the most powerful firewall software on the market is designed to run on an ordinary computer — probably a dedicated server if you're securing a large network. Other firewall software is designed to run on proprietary hardware that you have to buy along with the software, turning the bundle into a "security appliance." As a general rule, appliances are faster, easier to install and operate — and also more expensive. But there's no guarantee that an appliance will do a better job than a software-only firewall. Software firewalls tend to be more flexible, and it's easier to upgrade the hardware it's running on.

Network-Level Firewalls

The first generation of firewalls (c. 1988) worked at the network level by inspecting packet headers and filtering traffic based on the IP address of the source and the destination, the port and the service. Some of these primeval security applications could also filter packets based on protocols, the domain name of the source and a few other attributes.
Network-level firewalls are fast, and today you'll find them built into most network appliances, particularly routers. These firewalls, however, don't support sophisticated rule-based models. They don’t understand languages like HTML and XML, and they are capable of decoding SSL-encrypted packets to examine their content. As a result, they can’t validate user inputs or detect maliciously modified parameters in an URL request. This leaves your network vulnerable to a number of serious threats.

Circuit-Level Firewalls

These applications, which represent the second-generation of firewall technology, monitor TCP handshaking between packets to make sure a session is legitimate. Traffic is filtered based on specified session rules and may be restricted to recognized computers only. Circuit-level firewalls hide the network itself from the outside, which is useful for denying access to intruders. But they don't filter individual packets.

Application-Level Firewalls

Recently, application-level firewalls (sometimes called proxies) have been looking more deeply into the application data going through their filters. By considering the context of client requests and application responses, these firewalls attempt to enforce correct application behavior, block malicious activity and help organizations ensure the safety of sensitive information and systems. They can log user activity too. Application-level filtering may include protection against spam and viruses as well, and be able to block undesirable Web sites based on content rather than just their IP address.
If that sounds too good to be true, it is. The downside to deep packet inspection is that the more closely a firewall examines network data flow, the longer it takes, and the heavier hit your network performance will sustain. This is why the highest-end security appliances include lots of RAM to speed packet processing. And of course you'll pay for the added chips.

Stateful Multi-level Firewalls

SML vendors claim that their products deploy the best features of the other three firewall types. They filter packets at the network level and they recognize and process application-level data, but since they don't employ proxies, they deliver reasonably good performance in spite of the deep packet analysis. On the downside, they are not cheap, and they can be difficult to configure and administer.

IDS vs. IPS Explained

Layered security is the key to protecting any size network, and for most companies, that means deploying both intrusion detection systems (IDS) and intrusion prevention systems (IPS). When it comes to IPS and IDS, it’s not a question of which technology to add to your security infrastructure – both are required for maximum protection against malicious traffic. In fact, vendors are increasingly combining the two technologies into a single box.

At its most basic, an IDS device is passive, watching packets of data traverse the network from a monitoring port, comparing the traffic to configured rules, and setting off an alarm if it detects anything suspicious. An IDS can detect several types of malicious traffic that would slip by a typical firewall, including network attacks against services, data-driven attacks on applications, host-based attacks like unauthorized logins, and malware like viruses, Trojan horses, and worms. Most IDS products use several methods to detect threats, usually signature-based detection, anomaly-based detection, and stateful protocol analysis.

The IDS engine records the incidents that are logged by the IDS sensors in a database and generates the alerts it sends to the network administrator. Because IDS gives deep visibility into network activity, it can also be used to help pinpoint problems with an organization’s security policy, document existing threats, and discourage users from violating an organization’s security policy.

The primary complaint with IDS is the number of false positives the technology is prone to spitting out – some legitimate traffic is inevitable tagged as bad. The trick is tuning the device to maximize its accuracy in recognizing true threats while minimizing the number of false positives; these devices should be regularly tuned as new threats are discovered and the network structure is altered. As the technology has matured in the last several years, it has gotten better at weeding out false positives. However, completely eliminating them while still maintaining strict controls is next to impossible – even for IPS, which some consider the next step in the evolution of IDS.


The IPS Advantage
At its most basic, an IPS has all the features of a good IDS, but can also stop malicious traffic from invading the enterprise. Unlike an IDS, an IPS sits inline with traffic flows on a network, actively shutting down attempted attacks as they’re sent over the wire. It can stop the attack by terminating the network connection or user session originating the attack, by blocking access to the target from the user account, IP address, or other attribute associated with that attacker, or by blocking all access to the targeted host, service, or application.

In addition, an IPS can respond to a detected threat in two other ways. It can reconfigure other security controls, such as a firewall or router, to block an attack. Some IPS devices can even apply patches if the host has particular vulnerabilities. In addition, some IPS can remove the malicious contents of an attack to mitigate the packets, perhaps deleting an infected attachment from an email before forwarding the email to the user.


Twice the Protection
Because IDS and IPS devices sit in different spots on the network, they can – and should – be used concurrently. An IPS product installed at the perimeter of the network will help stop zero day attacks, such as worms and viruses, in their tracks – even the newest threats can be blocked with rigorous tuning. An IDS product installed inside the firewall will monitor internal activity, guarding against the ever-present insider threat, and lend greater visibility into security events, past and present.

Choosing a product that offers both technologies can be the most cost-effective and efficient approach. “With one device that does IDS and IPS, you can enable IDS on part of the network and enable IPS on a different part. It’s almost a virtual device,” says Sanjay Beri, senior director of product management at Juniper Networks, a network infrastructure vendor based in Sunnyvale, Calif.